Инструменты
у
р м
т е
с н
И н т
ы

Наземные
Космические

Астрономические инструменты и приборы - оптические телескопы с разнообразными приспособлениями и приемниками излучения, радиотелескопы, лабораторные измерительные приборы и другие технические средства, служащие для проведения и обработки астрономических наблюдений.

Вся история астрономии связана с созданием новых инструментов, позволяющих повысить точность наблюдений, возможность вести исследования небесных светил в диапазонах электромагнитного излучения , недоступных невооруженному человеческому глазу.

Первыми еще в далекой древности появились угломерные инструменты. Самый древний из них - это гномон, вертикальный стержень, отбрасывающий солнечную тень на горизонтальную плоскость. Зная длину гномона и тени, можно определить высоту Солнца над горизонтом.

К старинным угломерным инструментам принадлежат и квадранты. В простейшем варианте квадрант - плоская доска в форме четверти круга, разделенного на градусы. Около центра этого круга вращается подвижная линейка с двумя диоптрами.

Широкое распространение в древней астрономии получили армиллярные сферы - модели небесной сферы с ее важнейшими точками и кругами: полюсами и осью мира, меридианом, горизонтом, небесным экватором и эклиптикой. В конце XVI в. лучшие по точности и изяществу астрономические инструменты изготовлял датский астроном Т. Браге. Его армиллярные сферы были приспособлены для измерения как горизонтальных, так и экваториальных координат светил.

Коренной переворот в методах астрономических наблюдений произошел в 1609 г., когда итальянский ученый Г. Галилей применил для обозрения неба зрительную трубу и сделал первые телескопические наблюдения. В совершенствовании конструкций телескопов-рефракторов, имеющих линзовые объективы, большие заслуги принадлежат И. Кеплеру.

В XX в. получили распространение зеркально-линзовые телескопы, конструкции которых были разработаны немецким оптиком Б. Шмидтом (1931) и российским оптиком Д. Д. Максутовым (1941).

В 1974 г. закончилось строительство зеркального телескопа с диаметром зеркала 6 м. Этот телескоп установлен на Кавказе в Специальной астрофизической обсерватории. Возможности этого инструмента огромны. Уже опыт первых наблюдений показал, что этому телескопу доступны объекты 25-й звездной величины, т. е. в миллионы раз более слабые, чем те, которые наблюдал Галилей в свой телескоп.

Современные астрономические инструменты используются для измерения точных положений светил на небесной сфере; для определения скорости движения небесных светил вдоль луча зрения {лучевые скорости), для вычисления геометрических и физических характеристик небесных тел; для изучения физических процессов, происходящих в различных небесных телах; для определения их химического состава и для многих других исследований небесных объектов, которыми занимается астрономия.

К числу астрономических инструментов относятся универсальный инструмент и близкий к нему по конструкции теодолит; меридианный круг, используемый для составления точных каталогов положений звезд; пассажный инструмент, служащий для точных определений прохождения звезд через меридиан места наблюдений, что нужно для службы времени.

Для фотографических наблюдений используются астрографы. Для астрофизических исследований нужны телескопы со специальными приспособлениями, предназначенными для спектральных (объективная призма, астроспектрограф), фотометрических (астрофотометр), поляриметрических и других наблюдений. Повысить проницающую силу телескопа удается путем применения в наблюдениях телевизионной техники, а также фотоэлектронных умножителей.

Для наблюдений некоторых астрономиче ских объектов разработаны специальные конструкции инструментов. Таковы солнечный телескоп, коронограф (для наблюдений солнечной короны), кометоискатель, метеорный патруль, спутниковая фотографическая камера (для фотографических наблюдений спутников) и многие другие.

В ходе астрономических наблюдений получают ряды чисел, астрофотографии, спектрограммы и другие материалы, которые для окончательных результатов должны быть подвергнуты лабораторной обработке. Такая обработка ведется с помощью лабораторных измерительных приборов.

Важный прибор, необходимый для наблюдений - астрономические часы.

Существенно обогатила наши представления о Вселенной радиоастрономия, зародившаяся в начале 30-х гг. нашего столетия. В 1943 г. российские ученые Л. И. Мандельштам и Н. Д. Папалекси теоретически обосновали возможность радиолокации Луны. Радиоволны, посланные человеком, достигли Луны и, отразившись от нее, вернулись на Землю. 50-е годы XX в. - период необыкновенно быстрого развития радиоастрономии. Ежегодно радиоволны приносили из космоса новые удивительные сведения о природе небесных тел.

Сегодня радиоастрономия использует самые чувствительные приемные устройства и самые большие антенны. Радиотелескопы проникли в такие глубины космоса, которые пока остаются недосягаемыми для обычных оптических телескопов. Перед человеком раскрылся радиокосмос- картина Вселенной в радиоволнах.

Астрономические инструменты для наблюдений устанавливают на астрономических обсерваториях. Для строительства обсерваторий выбирают места с хорошим астрономическим климатом, где достаточно велико количество ночей с ясным небом, где атмосферные условия благоприятствуют получению хороших изображений небесных светил в телескопах. Как правило, такие места находят в горах.

На вершинах гор воздух чище, спокойнее, и поэтому условия для изучения Вселенной там более благоприятные.


Двадцатый век привнес в работу астрономов совершенно новые возможности

В октябре 1957 года перед астрономами открылись новые горизонты в изучении Вселенной. Первый космический спутник открыл двери в новое информационное измерение. Дело в том, что земная атмосфера является мощным экраном на пути, как фотонов довольно широкой полосы частот, так и других частиц, приходящих из глубин космоса.

Новые же технические возможности, появившиеся с началом космической эры, позволили выводить за пределы воздушной оболочки Земли самые различные типы астрономических приборов - рентгеновские, ультрафиолетовые, гамма - телескопы. Эти инструменты значительно увеличили объем наших знаний о космосе.

Так, например, исследование космических источников в рентгеновском диапазоне начались с выводом соответствующих астрономических инструментов за пределы земной атмосферы. Основная цель рентгеновской астрономии - диагностика горячей плазмы. Исследование горячей космической плазмы в рентгеновском диапазоне позволяет изучать природу взрывных процессов в различных объектах, а также свойства вещества в экстремальных физических состояниях, недостижимых в земных лабораториях



Планомерные космические исследования в рентгеновском диапазоне проводятся с начала 70 - ых годов. На рисунке изображена космическая обсерватория "Гранат", начавшая свою работу в 1989 году. Среди приборов обсерватории, был и рентгеновский телескоп, с помощью которого изучались нейтронные звезды,черные дыры, белые карлики, остатки вспышек сверхновых звезд, межзвездная среда нашей Галактики, молекулярные облака, центр нашей Галактики, внегалактические объекты, фоновое рентгеновское излучение нашей Вселенной.

В 1979 году впервые на орбите начал свою работу радиотелескоп, что открывало возможности по созданию в будущем гигантских космических радиоинтерферометров, базой которых могли быть расстояния в сотни миллионов километров.

Для исследования неба в наиболее энергичной части спектра используют гамма - телескопы, примером которого является прибор, установленный на космической обсерватории "Гамма", запущенной в космос в 1990 году.



Кроме того, земная атмосфера мешает наблюдениям и в оптическом диапазоне, именно по этой причине астрономы всегда стремились разместить свои приборы как можно выше в горах, там воздействие атмосферы несколько ослаблено, и потому наблюдения более успешны. Теперь же стало возможным выводить в открытый космос и оптические телескопы. В 1987 году на орбиту Земли был выведен крупнейший космический прибор - оптический телескоп с диаметром зеркала 2,4 м, названный в честь астронома - Эдвина Хаббла. Наблюдение на этом телескопе дало массу новой информации о строении Вселенной, о природе самых различных космических объектов.

… Но не менее велико значение межпланетных космических станций, призванных подробно изучать объекты Солнечной системы. Аппараты, созданные человеческими руками, побывали на поверхности Луны, Венеры, Марса, некоторых малых телах. Кроме того, космические аппараты пролетали в непосредственной близости от Меркурия, Юпитера, Сатурна, Урана, Нептуна, кометы Галлея, некоторых других космических тел, передав большое количество интереснейших фотографий и море иной информации.

Среди этих станций нельзя не отметить известные серии "Марс" и "Венера", аппараты этих серий в 60ых - 80ых годах провели широкие исследования одноименных планет, среди американских аппаратов нельзя обойти молчанием серии "Маринер" и "Викинг". На рисунке изображен спускаемый аппарат станции "Венера-14". На поверхности Венеры ему пришлось работать под давлением почти в 100 атмосфер и температурой окружающей углекислоты в 470 градусов С. И при этом передавать информацию на орбитальную часть станции.

В 1972-ом и в 1973-ем годах в дальний космос были запущены соответственно "Пионер-10" и "Пионер-11". Исследовав Юпитер, "Пионер-10" в 1979 году пересек орбиту Урана, а в 1987 году вышел за пределы Солнечной системы, став первым межзвездным кораблем.

В 1977 году были запущены космические аппараты: "Вояджер-1" и "Воялжер-2". "Воялжеру-2" предстояло выполнить самую великую исследовательскую миссию 20ого века. Его путь пролегал через систему Юпитера, которую он пересек в 1979 году, далее в 1981 году он пролетел рядом с Сатурном и продолжил свой путь к более удаленным планетам - в 1986 году его фотокамеры передали человечеству виды Урана и его спутников, а в 1989году люди увидели с относительно близкого расстояния систему Нептуна.


После чего аппарат пересек границы Солнечной системы и отправился в межзвездное путешествие. Связь с ним до сих пор поддерживается с Земли и, предположительно, это будет возможно до 2013 года.

Обсерватории Оптические Радио Другие Хаббл К началу
Посетите астрономические обсерватории мира Оптические телескопы Радиотелескопы мира Инфракрасные, гамма- и прочая астрономическая техника Космический телескоп Хаббл К началу
Hosted by uCoz